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Introductory reminiscence. It was after a physics seminar—therefore on a
Wednesday—that Richard Crandall and I, in the company of some colleagues,
adjourned to Ye Olde Town Crier for veal birds (Wednesday’s special on the
invariable menu of that establishment), Kindly Olde Dr. Parkers (to honor the
memory of the once-upon-a-time chairman of our department, the inventor of
this modified martini and a specialty of the house) and shop talk. Richard,
who was working at the time on material subsequently published as “On the
quantum zeta function,”1 was motivated to ask me whether I knew of an efficient
way to evaluate the trace of the inverse of a matrix. “I might,” said I, “though
whether my idea will be of any real use to you I cannot guess.” As he was
leaving town the next morning, I returned to my office after dinner and wrote
out the following material at a single sitting. This I was able to do for a curious
reason:

In  I had come by accident (which is to say, while searching for
something else) upon Advanced Problem No.  which had been submitted
by one V. F. Ivanoff to the American Mathematical Monthly (65, 212 (1958)),
wherein readers are asked to show that the nth derivative F (n)(x) of a composite
function F (x) = Φ(f(x)) can be described
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where f (k) ≡
(

d
dx

)k
f(x) and DkΦ(f) ≡

(
d
df

)k
Φ(f). I recognized on the

occasion that “Ivanoff’s Formula”contained the seed of a solution to the problem
that had sent me to the library in the first place, and I discovered subsequently
that from it radiates in fact a set of techniques relating usefully to a remarkable
variety of topics. Some of that material I pulled together long ago in a seminar
“Some applications of an elegant formula due to V. F. Ivanoff” presented on
 May  to the Applied Math Club at Portland State University (see
collected seminars –), and it is from that source that I extracted
the germ of the idea developed here.

The computational technique. Let M be an N ×N matrix. Let its characteristic
polynomial be notated

p(x) = det(M − xI) = p0 + p1x + p2x
2 + · · · + pNxN (1)

where clearly
p0 = det M

...

pN−1 = (−)N−1 trM

pN = (−)N

(2)

By the Cayley-Hamilton Theorem

p0I + p1M + p2M
2 + · · · + pNM

N = O (3)

Therefore

M
−1 = −p1I + p2M + · · · + pNM

N−1

p0

(4)

which would provide an easy way to construct M
−1—whence also trM

−1—if
there were an easy way to construct the numbers pn : n = 1, 2, . . . , N . There
is. . .

. . .but to describe it I find it convenient to work initially not with p(x) but
with the equivalent structure

q(y) = det(I − yM) = (−y)N · p(1/y) (5.1)
= 1 + q1y + q2y

2 + · · · qNyN (5.2)

The trick now is to notice that

q(y) = etr log(I−yM) (6)

and that

log(I − yM) = −yM − 1
2y2

M
2 − 1

3y3
M

3 − 1
4y4

M
4 − · · · (7)
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Evidently

q(y) = exp
{
− T1y − 1

2T2y
2 − 1

3T3y
3 − 1

4T4y
4 − · · ·

}
(8)

where
Tn = trM

n (9)

Developing the composite function which appears on the right side of (8), we
find

q(y) = 1 − T1y+ 1
2! [T

2
1 − T2]y

2

− 1
3! [T

3
1 − 3T1T2 + 2T3]y

3

+ 1
4! [T

4
1 − 6T 2

1 T2 + 8T1T3 + 3T 2
2 − T4]y

4 + · · · (10)

which looks like an infinite series, but actually truncates at the Nth term. To
get a preliminary sense of how this comes about, consider the case N = 2. We
have

p(x) = p0 + p1x + p2x
2

= det M − T1x + x2

which by (3) entails det M · I− T1 ·M + M
2 = O, of which we take the trace to

obtain
2 det M = T 2

1 − T2 (11)

So we have
p(x) = 1

2 [T 2
1 − T2] − T1x + x2 (12)

whence
q(y) = y2p(1/y) = 1 − T1y + 1

2 [T 2
1 − T2]y

2

This is the advertised truncated version of (10), but why does it truncate?
Because the Cayley-Hamilton Theorem p(M) = O =⇒ M p(M) = O =⇒
tr{M p(M)} = 0, and this, by (11), entails

1
2 [T 2

1 − T2]T1 − T1T2 + T3 = 1
2 [T 3

1 − 3T1T2 + T3] = 0

which serves to switch off the cubic term in (10). Higher order terms vanish by
the same mechanism, but to construct the explicit demonstration one has to
dig a bit deeper; the digging will serve also to reduce the phrase “developing
the composite function. . . ” to the status of a recursive algorithm. Here I must
be content simply to state the results; the arguments are pretty, I think, but of
no immediate interest in themselves.

On has qn = (−)n 1
n!Qn, where

Qn =
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can be computed recursively from

Qn =
n∑

m=1

(−)m+1 (n − 1 )!
(n − m)!

TmQn−m (14)

Thus
Q0 = 1
Q1 = T1Q0

Q2 = T1Q1 − T2Q0

Q3 = T1Q2 − 2T2Q1 + 2T3Q0

Q4 = T1Q3 − 3T2Q2 + 6T3Q1 − 6T4Q0

...

(15)

giving
Q0 = 1
Q1 = T1

Q2 = T 2
1 − T2

Q3 = T 3
1 − 3T1T2 + 2T3

Q4 = T 4
1 − 6T 2

1 T2 + 8T1T3 + 3T 2
2 − 6T4

...

(16)

One has now enough information to complete the proof (if proof were needed)
that

Cayley-Hamilton Theorem =⇒ Qn = 0 : n > N

More interesting, I think, is the universality (i.e., the N -independence) which
attaches to (16), and therefore to statements like

p(x) =
N∑

n=0

1
n!Qn(−x)N−n (17)

and
det M = 1

N !QN for any N × N matrix M (18)

Also interesting are the major simplifications which tend, in my experience, to
result when M is endowed with any kind of specialized structure. For example,
if M is antisymmetric, then so are all of its odd powers, and so also are all its
odd traces; in place of (16) one has

Q0 = 1
Q1 = 0
Q2 = −T2

Q3 = 0

Q4 = 3T 2
2 − 6T4

...
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Or again, if M projects (M
2 = M) onto a d-dimensional domain (trM = d)

then Tn = d (all d) and we have

Qn =
{

d!/(n − d)! n = 1, 2, . . . , d
0 n > d

giving p(x) = (−x)N−d (1−x)d: the eigenvalues of M are zero (with multiplicity
N − d) and unity (with multiplicity d). This is hardly news, but illustrates the
elegant swiftness with which strong results can (at least in favorable cases) be
obtained by the methods described above. At (7) I made (formal) use of a series
which converges conditionally; no lingering condition attaches, however, to our
final results. Note also that, according to (18), to compute the determinant of
M we only have to compute M

2, M3, . . . , MN (and of the latter we have actually
to compute only the diagonal elements); the computational difficulty has been
reduced from Laplace’s O(N !) to—at worst—O(N4).

To wrap it up: Compute M
0, M , M2, . . . , MN to get T0, T1, T2, . . . , TN and

use (14) to compute Q0, Q1, Q2, . . . , QN . Then

tr(M
−1) = −T0p1 + T1p2 + T2p3 + · · · + TN−1pN

p0

(19)

where
p0 = + 1

N !QN

p1 = − 1
(N−1)!QN−1

p2 = + 1
(N−2)!QN−2

...

pN = (−)N

(20)

Returning with (20) to (4) we obtain an inversion algorithm (i.e., a method
for constructing M

−1) which is computationally much more efficient than the
standard “transpose of the matrix of cofactors” (and from which (19) can be
obtained as a corollary), while

det M =
1
N

N∑
m=1

(−)m+1 1
(N − m)!

TmQN−m

provides a description of det M which—remarkably—makes no use of the
standard “summation over signed permutations” procedure. These expressions
are structurally so simple as (in favorable cases) to permit one to contemplate
passage to the continuous limit N −→ ∞.


